X iv : m at h - ph / 0 30 70 55 v 1 2 8 Ju l 2 00 3 Random matrices with external source and multiple orthogonal polynomials

نویسندگان

  • P. M. Bleher
  • A. B. J. Kuijlaars
چکیده

We show that the average characteristic polynomial P n (z) = E[det(zI−M)] of the random Hermitian matrix ensemble Z −1 n exp(−Tr(V (M) − AM))dM is characterized by multiple orthogonality conditions that depend on the eigenvalues of the external source A. For each eigenvalue a j of A, there is a weight and P n has n j orthogonality conditions with respect to this weight, if n j is the multiplicity of a j. The eigenvalue correlation functions have determinantal form, as shown by Zinn-Justin. Here we give a different expression for the kernel. We derive a Christoffel-Darboux formula in case A has two distinct eigenvalues, which leads to a compact formula in terms of a Riemann-Hilbert problem that is satisfied by multiple orthogonal polynomials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h - ph / 0 70 30 43 v 3 2 8 O ct 2 00 7 RANDOM MATRICES , NON - BACKTRACKING WALKS , AND ORTHOGONAL POLYNOMIALS

Several well-known results from the random matrix theory, such as Wigner’s law and the Marchenko–Pastur law, can be interpreted (and proved) in terms of non-backtracking walks on a certain graph. Orthogonal polynomials with respect to the limiting spectral measure play a rôle in this approach.

متن کامل

ar X iv : m at h - ph / 0 41 20 17 v 1 7 D ec 2 00 4 Introduction to the Random Matrix Theory : Gaussian Unitary Ensemble and Beyond

These lectures provide an informal introduction into the notions and tools used to analyze statistical properties of eigenvalues of large random Hermitian matrices. After developing the general machinery of orthogonal polynomial method, we study in most detail Gaussian Unitary Ensemble (GUE) as a paradigmatic example. In particular, we discuss Plancherel-Rotach asymptotics of Hermite polynomial...

متن کامل

ar X iv : m at h - ph / 0 50 90 44 v 2 1 1 Ja n 20 06 RANDOM POLYNOMIALS , RANDOM MATRICES AND L - FUNCTIONS

We show that the Circular Orthogonal Ensemble of random matrices arises naturally from a family of random polynomials. This sheds light on the appearance of random matrix statistics in the zeros of the Riemann zeta-function.

متن کامل

ar X iv : m at h - ph / 0 21 20 63 v 3 1 5 M ay 2 00 3 Janossy Densities

We derive an elementary formula for Janossy densities for determinantal point processes with a finite rank projection-type kernel. In particular, for β = 2 polynomial ensembles of random matrices we show that the Janossy densities on an interval I ⊂ R can be expressed in terms of the Christoffel-Darboux kernel for the orthogonal polynomials on the complement of I.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003